当前位置:

首 页 > 产品展示 >> AccuSizerA7000颗粒计数器 > A2000不溶性微粒检测仪 > AccuSizer 780 A2000 SIS美国药典注射剂检测仪

产品展示Products

美国药典注射剂检测仪

型    号:AccuSizer 780 A2000 SIS
报    价: 市场价:
分享到:

AccuSizer 780 A2000 SIS不溶性微粒检测仪集自动进样、自动检测、数据处理以及自动清洗等全自动检测功能于一身,为注射剂检测提供安全、快捷、高效、可靠的不溶性微粒分析解决方案。其搭载的系列传感器采用先进的半导体用光阻法单颗粒光学传感技术(SPOS),更额外加载了光散传感器,除覆盖传统的光阻法检测范围1.5 μm – 400 μm外,更可下探到0.5μm的极限值。

美国药典注射剂检测仪产品概述:

AccuSizer 780 A2000 SIS 不溶性微粒检测仪
注射剂不溶性微粒检测方案全覆盖
提升注射剂用药安全
遵循法规规范


基本信息

 

仪器型号:AccuSizer 780 A2000 SIS

工作原理:光阻法[Light Obscuration(LO), Light Extinction(LE),Light block(LB)]

检测范围: 0.5 μm – 400 μm

     AccuSizer 780 A2000 SIS不溶性微粒检测仪集自动进样、自动检测、数据处理以及自动清洗等全自动检测功能于一身,为注射剂检测提供安全、快捷、高效、可靠的不溶性微粒分析解决方案。其搭载的系列传感器采用先进的半导体用光阻法单颗粒光学传感技术(SPOS),更额外加载了光散传感器,除覆盖传统的光阻法检测范围1.5 μm – 400 μm外,更可下探到0.5μm的极限值。

   AccuSizer 780 A2000 SIS 不溶性微粒检测仪内置各国药典的检测标准,更可通过自定义检测标准符合多种应用场景,也可以避免后续药典标准升级之虞。

  AccuSizer 780 A2000 SIS不溶性微粒检测仪搭载的AccuSizer软件完全符合US 21CFR Part11要求,具有数据自动备份,审计追踪,权限分级,电子签名,以及可连接Lims系统等多项功能,具有50uL的微量进样能力,是检测大小注射液、蛋白注射液、混悬液、口服液、滴眼液等液体制剂及无菌粉末和无菌原料药的不二选择。

 

技术优势

 

1、检测范围广0.5μm-400μm;

2、高分辨率,高灵敏性,统计精度高;

3、粒子灵敏度        ≤10PPT

4、粒径准确度        ≥98%

5、粒子计数准确度     ≥90%

6、符合21CFR法规软件——符合cGMP要求;

7、现场校准,无需返厂;

8、模块化设计,便于升级及维护;

9、512通道,不放过任何细微颗粒;

10、符合美国药典USP787、788、789、1788、中国药典CP、欧洲药典EP、日本药典JP等要求,且可自定义报告和标准;

11、集自动取样(选配)、自动检测、数据处理以及自动清洗等自动化功能与一身;

 

512数据通道

 

      对于颗粒计数器来说,通道数越多,意味着其在特定测量量程内划分的区域越多。AccuSizer 780 颗粒计数器系列的仪器对于0.5μm - 400.0μm的测量范围按照指数等级划分有512个通道,意味着其在粒径越小处划分的范围越细,例:1.586μm-1.675μm。这样做的优点是显而易见的,一方面仪器实现了计数的精准性,将测量的结果作最细致的分析,而不是将结果作大致的分类。另一方面,对于测量复杂体系和多组分的样品,数据能很好的体现在结果图谱及数据中。

图片2.png

图1多通道的优势

      如上四张图是同样一个样本在使用不同通道的时候的表现,明显可以看出,使用8、16、32个通道的时候,仅仅能判断颗粒度在一个范围内,不能明确到底多大。而换用512高通道后,粒径大小的辨析度明显增加,对于峰值的判断更加清晰明了。

 

 

高分辨率

      高通道的优势换来的是高分辨率的优势。所谓分辨率,在这里指的是分辨同一体系内不同粒径大小的能力。得益于超前的设计理念和软硬件组合,AccuSizer 780系列仪器除了能够呈现完全不同于经典光散射的颗粒计数分布外,相对于经典的电阻法和光阻法,具有更高的分辨率和精准性。它不会错过任何“尾部” 大颗粒,而这些“尾部”大颗粒往往是决定产品好坏的标准。

图片3.png

图2 AccuSizer 780 高分辨率展示

      如图2所示,同一个样本中混合0.7μm,0.8μm,1.3μm,2μm,5μm,10μm,15μm,20μm,50μm,100μm,200μm 11种标准PSL粒子,AccuSizer 780可以很容易将每种不同大小的标粒区分清楚。

 

图片4.png

图3 SPOS VS Laser diffraction

      图3展示了同一个样本在SPOS技术和激光衍射法(Laser diffraction,LD)粒度仪中测得的结果。样本使用的是过400目筛(37μm)的样本。SPOS技术(绿色线)显示在35μm以上是没有粒子的,这和实际情况相符。但是使用LD检测得到的仅仅是“相似”的分布,但是在100μm本来没有颗粒的情况下却给出了还有大量大颗粒的假性结果。

US 21CFR Part 11法规软件——符合cGMP要求

      AccuSizer 780 A7000 APS不溶性微粒检测仪全系配备了符合美国联邦法规21章第11款(21 CFR PART11)要求的软件。具有数据自动备份,审计追踪,权限分级,电子签名,可连接Lims系统等多项功能。

      中国食品药品监督管理局(NMPA)有政策趋势将对医药研发企业实施规范的GLP 管理。使用符合21 CFR PART 11法规的软件更能符合现在GLP/GMP的要求。

图片5.png

产品优势

 模块化设计

将主机(数据处理中心),进样器,传感器分模组进行设计,既利于维护,也有助于后续的升级。

图片13.png

主机:512通道计算实现仪器的高分辨率、高灵敏度;

进样器:使用洁净度、耐受度超高的PFA管路,测样过程安全、简单、快捷,配备不同型号的注射器,拆卸方便;

传感器独立安装,方便拆卸,既有利于维护维修,也便于更换其他型号传感器。

CETAC自动进样器

微量进样器

微量进样

      随着诸如蛋白质注射液等新型注射剂的研发和上市,对于金贵样品的“痕量”检测提出了要求。PSS使用先进的微控技术,可以实现最小容量到50μl的检测量,大大减少样品浪费,降低检测成本。

      而新版药典如<USP789>对于体积精度更是提出了苛刻的要求。AccuSizer 780 A2000 SIS不溶性微粒检测通过了严格测试,可以保证进样量的准确性。

image.png

表1 微量进样器的精确度确认

      表中可以看出,在50微升的重复性,AccuSizer 780 A2000 SIS表现优异,重复三次的RSD值为2.4%。

CETAC自动进样

图片14.png

      在传统的粒度仪使用过程中,需要操作人员时刻在现场操作。因为粒度仪的测试结果都是累计结果,也就是说,数据需要一定的时间来累积才能获得准确的结果。一般来说,一个样品要取得比较好的数据重现性和准确性,需要3-15分钟,甚至更长时间。现代实验室如果有大量的样品进行检测,会花费很多时间。PSS粒度仪可全系搭配CETAC自动进样系统,一次性可以检测24-96个样品,这会大大节省操作时间。

工作原理

目录结构:

1.单颗粒光学传感技术简介 

2.传统光阻法和光散法测量粒度的原理

3.PSS的SPOS技术介绍

 

1、单颗粒光学传感技术简介

      单颗粒光学传感技术(Single Particle Optical Sizing, SPOS)是一种用于测量溶剂中悬浮粒子的大小和数量浓度的激光粒度检测通用技术。在SPOS技术中液体悬浮液中的粒子流经传感器的样品池时,在激光光源的照射下,被阻挡或者被散射的光会转变成脉冲电压信号,脉冲信号的大小是由粒子的截面面积和物理判定规则即光散射或者光阻共同决定的。光阻也被称为不透光度或者光消减。而粒子间的相互阻挡和散射是和粒子的大小和浓度是有关系的,利用脉冲幅度分析器和校准曲线便可以得到悬浮粒子的数量浓度和粒度大小分布。传统光阻法可以测得1.5μm以上的粒子和并具有较高的分辨率。

      单颗粒传感技术(SPOS)填补了常见粒度仪检测技术在检测粒径分布中的重要不足—粒子数量的统计。自AccuSizer 780系列仪器诞生,以往以牺牲精确性和分辨率来换取检测速度和易用的历史一去不复返!

      粒粒皆清楚,不丢失任何细节。

 

2.传统光阻法与光散射法原理

图片6.png

Figure 1 光阻法检测示意图

      图1为光阻法检测原理图,待测液体流过横截面很小的流通池,流通池两侧装有光学玻璃,激光器的光束通过透镜组准直,光束穿过流通池并被光电探测器所接收。若待测液体中没有颗粒,则光电探测器接收到的光信号稳定不变,输出的电压信号也恒定,将此恒定信号作为基准电压;若液体中有颗粒物质,颗粒通过流通池传感区域,将会遮挡激光,光电探测器接收到的光信号减小,产生一个负的脉冲电信号,如下图2所示。

图片7.png

Figure 2 光电二极管信号

      脉冲信号幅度与基准电压信号有如下关系:

                       图片11.png                (1)                 

      式(1)中:E为颗粒遮挡引起的脉冲幅度;a为颗粒的有效遮挡面积(等效为球形);A为光电探测器的有效面积;E0是没有颗粒时的光电探测器所产生的基准电压。因此,脉冲信号幅度对应颗粒的大小,脉冲信号个数对应颗粒的数量。

 

图片8.png

Figure 3 光散射法检测原理图

 

      图3为光散射法检测原理图,待测液体流过流通池,流通池两侧装有光学玻璃,激光器的光束通过透镜组准直,光束穿过流通池,照射在光陷进上。若待测液体中没有颗粒,则光电探测器就收不到光信号,若液体中有颗粒,颗粒通过流通池,与激光光束发生散射现象。某一个(或几个)角度下的散射光通过透镜收集汇聚到光电探测器上,产生正的电信号脉冲,脉冲信号的幅度和散射光强成正比。根据信号的幅度和个数可以对液体中的微小颗粒进行计数检测。

      当光束照射含有悬浮微粒的液体时光能减弱。根据文献, 此时悬浮液中微粒会对光产生散射和吸收等作用,因为这些作用导致的光强减弱与微粒的浓度存在线性关系。在文献中引用了如下公式,来描述当微粒浓度较小时,透射光强与入射光强之间的关系:

                                    1577260612(1).jpg

      它对应于因为散射和吸收而导致光的衰减总量。有米氏散射的理论,随着微粒的增大,光强大量集中于前向0度角附近,图1中我们也可以注意到这一点。(4)式中没有考虑到这样的事实:在光阻法检测中,前向0角度附近的散射光仍然能够被探测器接收,因此必须考虑对散射系数进行修正。实际中(4)式变为:

           1577260670(1).jpg            

3.PSS独特技术的单颗粒光学传感技术简介

      经过光感区域的粒子由于大小不同,光强随之产生相应的变化。将探测器收集的光信号转换成电压信号,不同的电压信号对应不同的粒径大小,从而得到微粒的粒径。美国PSS粒度仪公司(Particle Sizing Systems)的单颗粒光学传感技术(Single Particle Optical Sizing,SPOS)是在传统光阻法(LE)大颗粒光学传感技术的基础上加入了激光散射模块(LS)。在两个模块(LE+LS)同时运行的情况下,检测下限由原来纯光阻的1.5μm下探至0.5μm。使得其在大颗粒检测领域的应用更加的广泛。

      SPOS技术对粒子的信号响应方式是信号与特定粒子相对应的。AccuSizer 780系列仪器中的传感器通过两种不同性质的物理作用:光消减(light extinction, LE)与光散射(light scattering, LS)对通过传感器的粒子进行测定。光消减技术检测通过流动池的光强变化,拥有检测粒子的粒径范围广且与粒子组份无关等优点。然而,它的灵敏度有限。另一方面,光散射技术具有相对窄的动态粒径范围 (取决于检测器/放大器的饱和值),但能检测到小粒径的粒子,使用大功率激光光源还能检测到粒径更小的粒子。通过合并光消减和光散射响应信号,传感器可同时拥有这两种方法的优点,因而在不损失单粒子分辨率巨大优势的前提下拥有相对较广的动态粒径范围。

图4 PSS的SPOS原理图

 

 

分析方法及原理

光阻法(基于单颗粒光学传感技术)

测量范围(传感器可选)

 

0.5-400μm

1.5-400μm

2.0-1000μm

25.0-2500μm

50.0-5000μm

样品类型水相/有机相

通道数量

512

自定义通道数32

流速范围

5-120ml/min

进样量

50μl-1000ml

进样方式

自动

样品最大浓度

1011个/ml

符合标准

USP787、788、789、1788;CP0903

流速准确性

±5%

体积准确性

±5%

粒径准确性

±2%

计数准确性

 ±10%

磁力搅拌模块

标准配置

机械搅拌模块

可选配

自动进样器

可选配

Windows系统

Windows 7以上专业版操作软件

分析操作软件

标配:符合21CFR PART11规范的法规分析软件

电源选项

220 – 240 VAC,50Hz 或100 – 120 VAC,60Hz

外形尺寸

主机:46cm*31cm* 17cm

重量

约21kg

 



产品相关关键字: pss 不溶性微粒 粒度检测 颗粒计数器 激光粒度仪

留言框

  • 产品:

  • 留言内容:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 详细地址:

  • 省份:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
扫一扫访问手机站扫一扫访问手机站
访问手机站